The aim of this book is to present a clear and well-organized treatment of the concept behind the development of mathematics and solution techniques.
Multiple Fixed-Point Theorems and Applications in the Theory of ODEs, FDEs and PDEs covers all the basics of the subject of fixed-point theory and its applications with a strong focus on examples, proofs and practical problems, thus making it ideal as course material but also as a reference for self-study.
Many problems in science lead to nonlinear equations T x + F x = x posed in some closed convex subset of a Banach space. In particular, ordinary, fractional, partial differential equations and integral equations can be formulated like these abstract equations. It is desirable to develop fixed-point theorems for such equations. In this book, the authors investigate the existence of multiple fixed points for some operators that are of the form T + F, where T is an expansive operator and F is a k-set contraction. This book offers the reader an overview of recent developments of multiple fixed-point theorems and their applications.
About the Authors
Svetlin G. Georgiev is a mathematician who has worked in various areas of mathematics. He currently focuses on harmonic analysis, functional analysis, partial differential equations, ordinary differential equations, Clifford and quaternion analysis, integral equations and dynamic calculus on time scales.
Khaled Zennir is assistant professor at Qassim University, KSA. He received his PhD in mathematics in 2013 from Sidi Bel Abbès University, Algeria. He obtained his Habilitation in mathematics from Constantine University, Algeria in 2015. His research interests lie in nonlinear hyperbolic partial differential equations: global existence, blow up and long-time behavior.¿